Mechanical Engineering, B.s. in University of Wisconsin - Madison, USA
Mechanical Engineering, B.s. in University of Wisconsin - Madison
Mechanical engineers are problem-solvers who make things work better, more efficiently, and more economically. They are innovators, coming up with original ideas to apply scientific knowledge in new ways. Mechanical engineers are builders, designing and developing machines and systems that make life easier. Mechanical engineers have strong science, mathematics, and technology backgrounds.
Manufacturing processes, design of mechanical equipment and systems, and energy generation and utilization are traditional mechanical engineering fields. Students receive basic preparation in all of these areas. Through choice of elective courses they may further specialize in areas such as automatic control systems, renewable energy systems, robotics, product design, biomedical engineering, computational mechanics, manufacturing systems engineering, etc. Mechanical engineering prepares students for entrance into industry, for independent business (e.g., consulting, contracting, or manufacturing), or for work in government agencies. A degree in mechanical engineering may be used as a background for medicine, law, or business, as well as for graduate work in engineering.
Work in these areas requires a solid background in mathematics, statistics, mechanics, physics, machine design, thermal sciences, materials, the use of computers, and manufacturing processes. Mechanical engineers must also possess good communication skills and be able to work in teams. Mechanical engineers should be aware of social and environmental consequences of their work.
With these skills, broad training, and an emphasis on systems design, mechanical engineers are in demand in practically every type of manufacturing, consulting, sales, and research organization. Mechanical engineers may work in automotive, materials processing, heavy equipment, paper, plastics, power, aerospace, chemical, electronics, or many other large and small industries. Their work may involve research and development of new products, design of equipment or systems, supervision of production, plant engineering, administration, sales engineering, or testing of individual components or complete assemblies.
Although many special areas exist in the profession, mechanical engineering can be subdivided into energy systems and mechanical systems.
The energy systems field has taken on special significance with the current awareness of the limited energy sources and the effects of energy use on the environment. In this field, mechanical engineers carry out work on the behavior of liquids, gases, and solids as they are used in all types of energy-conversion systems. Automotive engines, gas turbines, steam power plants, refrigeration systems, air pollution control, cryogenics and energy utilization require this type of background. To be proficient in this the engineer must have a knowledge of thermodynamics, fluid dynamics, heat transfer, and related subjects.
The mechanical systems field covers the design and manufacturing of products and equipment. Mechanical engineers who focus on design conceive of new devices and machines and also refine and improve existing designs. The design engineer must be proficient in kinematics, machine elements, mechanics, strength and properties of materials, dynamics, vibrations, etc. Mechanical engineers who focus on manufacturing are involved with planning and selecting manufacturing methods, with designing and developing manufacturing equipment, and with increasing the efficiency and productivity of current manufacturing technologies for polymer, metal, and ceramic products. The manufacturing engineer uses chemistry, materials science, mechanics of materials, materials processing principles and practices, principles of computer control, engineering statistics, and other physical and thermal sciences to improve manufacturing operations and systems, and the products they produce. Increasingly, the systems that mechanical engineers work with incorporate biological and information technology components.
Know more about Studying in USA
Tuition Fees in USA (1st Year Average) | BE/Btech: USD 28300 | MS: USD 22693 | BBA: USD 26616 | MBA: USD 29558 | BSc: USD 29418 | MA: USD 20452 | MIS: USD 22133 | MFin: USD 37683 | MEng: USD 29558 | MIM: USD 35301 | MEM: USD 23254 | MArch: USD 34741 | MFA: USD 28857 | BHM: USD 27176 |
Average Accomodation & Food Costs in USA | USD 700 to 1000 Per Month |
Entrance Exams in USA | TOEFL: 86 | IELTS: 6.5 | PTE: 60 | GRE: 309 | GMAT: 560 | SAT: 1177 |
Work and Study in USA | Permitted for 20 hours/week with a valid study permit. Know More |
Post Study Work Permit in USA | One to Two Years after graduation depending on the course. |
Cost of Student Visa in USA | USD 160 |
Student Visa in USA | F1 Visa for USA allows you study permit in USA in full time academic courses. Any accredited school, college, university, academic institute, seminary, or conservatory in USA must accept you beforehand to apply for F1 visa in USA. Know More |
Intakes in USA | There are Three Intakes in USA: Fall (August-September), Spring (January) Know More |
Top Job Sectors in USA | Health Care, Education, Construction, Hospitality & Tourism, Business Services, Finance. |
Economy in USA | GDP Growth of 2.1% (Q4 2019), The Larges Economy of the World by Nominal |
Duration :
Intake
february,october
Level
Undergraduate
Tuition & fees
$ 39,630 Per Year
IELTS
6.5
TOFL
95
PTE
0